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Problem
l Inaccuracies in initial conditions and model deficiencies interact non-

linearly, causing numerical weather forecast errors to grow.

l With recent progress in data assimilation, the accuracy of initial con-
ditions has improved dramatically.

l Accounting for model deficiencies has become relatively more impor-
tant for data assimilation and ensemble forecasting.
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Outline
l Brief review of model error correction

l SPEEDY model

l Generation of 6-hour forecasts and errors with NCEP reanalysis

l Separation of errors into monthly, diurnal, and state-dependent
components

l Estimation and correction of model errors

l Results: our method is effective and computationally feasible

l Conclusions
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Background
Schemm et. al. (81, 86)

l introduced procedures for statistical correction of numerical predic-
tions when verification data are only available at discrete times

l applying corrections only when verification data were available, they
were successful in correcting artificial model errors

l reduced the small scale 12-hr errors of the NMC model

l errors at the larger scales grew due to randomization of the residual
errors by the regression equations
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Background
Saha (1992)

l nudged a low-resolution version of the NMC operational forecast model
to estimate systematic errors

l reduced systematic errors (measured against hi-res model) by adding
artificial sources and sinks in heat, momentum, and mass

l correction during the integration and a posteriori correction were seen
to give equivalent improvement in forecasts
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Background
Klinker and Sardeshmukh (1992)

l estimated average 6-hour forecast error from analysis increments
of ECMWF operational model

l switched off each individual parameterization

l found that the model’s gravity wave parameterization dominated the
1-day forecast error
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Background
D’Andrea and Vautard (2000)

l using a simple QG model, estimated tendency errors by solving for the
model forcing which minimized 6-hour forecast errors

l during forecasts, found the closest analogues to the model state from
the reference time series

l used the tendency errors corresponding to these analogues to correct
forecasts online

l improved forecasts in Euro-Atlantic region

l computationally prohibitive
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Background
Leith (1978), first to formulate state-dependent correction procedure
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+b
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+b

l the tendency error g of the improved model is given by

g = ẋt−M
(
xt

)
−Lxt−b

where xt is the state taken as truth (e.g. reanalysis)
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Background
Leith (1978), first to formulate state-dependent correction procedure
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l the tendency error g of the improved model is given by
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where xt is the state taken as truth (e.g. reanalysis)

l derived an empirical correction by minimizing g>g
with respect to b and L
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+b

l the tendency error g of the improved model is given by

g = ẋt−M
(
xt

)
−Lxt−b

where xt is the state taken as truth (e.g. reanalysis)

l derived an empirical correction by minimizing g>g
with respect to b and L

l bL is a state-independent bias estimate
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)
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l bL is a state-independent bias estimate

l LLx is a state-dependent estimate of the model error
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+b

l the tendency error g of the improved model is given by

g = ẋt−M
(
xt

)
−Lxt−b

where xt is the state taken as truth (e.g. reanalysis)

l derived an empirical correction by minimizing g>g
with respect to b and L

l bL is a state-independent bias estimate

l LLx is a state-dependent estimate of the model error

l computationally prohibitive for operational models
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Background
DelSole and Hou (1999)

l applied Leith’s procedure to a 2-layer QG model on an 8 x 10 grid
(N=160 degrees of freedom)

l perturbed the model parameters to generate ‘nature’

l resulting model errors were strongly state-dependent by design

l Leith’s state-dependent error correction extended forecast skill

l computationally prohibitive for operational use
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.
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a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

IV. Correct the state-dependent errors.
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SPEEDY Model, Molteni (2003)
l primitive equations, global spectral model

l contains parameterizations of condensation, convection, clouds, radi-
ation, surface fluxes, and vertical diffusion

l T30 horizontal resolution, 7 sigma levels

l integrates vorticity, divergence, temperature, specific humidity, and
surface pressure

l post-processed into horizontal wind, temperature, specific humidity,
geopotential height, and surface pressure on 96x48 grid, 7 pressure
levels

l dissipation and time-dependent forcing determined by climatological
SST, surface moisture, albedo, land-surface vegetation, etc.
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Generating Time Series of Model Forecasts and Errors
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Generating Time Series of Model Forecasts and Errors
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Time Series and 5-year Climatology
l xf

6(t) = time series of model states

l xe
6(t) = corresponding 6-hour errors

l 5-year SPEEDY 6-hour climatology given by monthly mean xf
6

l 5-year reanalysis climatology given by monthly mean y
l Bias given by monthly mean xe

6
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.
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Our Method: I. Monthly Bias Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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200hPa Zonal Wind Monthly Bias

5-year Reanalysis Climatology y (contour), Bias xe
6 (color)

January July

l SPEEDY underestimates zonal wind on the poleward side of the win-
ter hemisphere jet.

l Exhibits large polar bias.
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700hPa Specific Humidity Monthly Bias

5-year Reanalysis Climatology y (contour), Bias xe
6 (color)

January July

l SPEEDY overestimates specific humidity at lower levels in the tropics,
especially in the winter hemisphere over the oceans.
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300hPa Specific Humidity Monthly Bias

5-year Reanalysis Climatology y (contour), Bias xe
6 (color)

January July

l SPEEDY underestimates specific humidity at upper levels, especially
in the summer hemisphere.
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Our Method: I. Monthly Bias Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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Our Method: I. Monthly Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)

2. Corrected a posteriori: Correct control forecast by 6-hour bias xe
6

at 6 hours, 12-hour bias xe
12 at 12 hours, etc.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)

2. Corrected a posteriori: Correct control forecast by 6-hour bias xe
6

at 6 hours, 12-hour bias xe
12 at 12 hours, etc.

3. Corrected online: Integrate model, ẋ = M(x)+ xe
6

∆t,

xe
6 is a daily linear interpolation (e.g. on July 1, xe

6 = xe
6(Jun)+xe

6(Jul)
2 )
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I. Monthly Bias Correction

850hPa February 1987 Global Mean Anomaly Correlation
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l Monthly bias correction gives substantial forecast improvement.
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I. Monthly Bias Correction

850hPa February 1987 Global Mean Anomaly Correlation
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l Monthly bias correction gives substantial forecast improvement.

l Online correction performs better than a posteriori correction.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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l Online correction is most effective at lower levels.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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l Online correction is most effective at lower levels.

l Improvements are uniform across levels in T, across seasons by level.
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I. Monthly Bias Correction

200hPa January 1982-86 Zonal Wind Bias
Control Online Corrected Forecasts

l Most of the bias is removed by the online correction.
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I. Monthly Bias Correction

850hPa January 1982-86 Temperature Bias
Control Online Corrected Forecasts

l Most of the bias is removed by the online correction.
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Our Method: I. Monthly Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.
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Our Method: II. Diurnal Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.
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II. Diurnal Bias Correction
l Anomalous model error time series: xe′

6 (i) = xe
6(i)−xe

6

l Anomalous model error matrix: D = [xe′
6 (1) xe′

6 (2) ... xe′
6 (N)]

l The leading EOFs of DD> represent patterns of diurnal variability
which are poorly represented by SPEEDY.
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II. Diurnal Bias Correction

Leading EOFs of DD>, T at 925hPa, Jan 1982-1986

l Lack of diurnal forcing results in wavenumber 1 structure in the errors

l SPEEDY underestimates (overestimates) near surface daytime (night-
time) temperatures, more prominent over land
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II. Diurnal Bias Correction

Principal Components
l Project leading EOFs onto anomalous errors (January, 1982)
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l Leading pair of EOFs out of phase by 12 hours

l Find average strength of daily cycle over Jan 1982-86

l Compute diurnal correction as a function of the time of day
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II. Diurnal Bias Correction

EOFs of DD>

January
1982-1986

Diurnally
Corrected
1987

l Diurnal correction substantially reduces error amplitude
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Our Method: II. Diurnal Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors.
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III. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Anomalous analysis state time series: y′(t) = y(t)−y
l Anomalous 6-hour error time series: xe′

6 (t) = xe
6(t)−xe

6
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III. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Anomalous analysis state time series: y′(t) = y(t)−y
l Anomalous 6-hour error time series: xe′

6 (t) = xe
6(t)−xe

6

l Analysis state covariance: Byy(t) = y′(t) y′>(t)
l Lagged cross covariance: Bxey(t) = xe′

6 (t) y′>(t−1)
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III. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Anomalous analysis state time series: y′(t) = y(t)−y
l Anomalous 6-hour error time series: xe′

6 (t) = xe
6(t)−xe

6

l Analysis state covariance: Byy(t) = y′(t) y′>(t)
l Lagged cross covariance: Bxey(t) = xe′

6 (t) y′>(t−1)

Leith’s correction operator, given by L = Bxey Byy
−1, provides a

state-dependent correction:

ẋ = M
(
x
)
+Lx+b
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III. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Anomalous analysis state time series: y′(t) = y(t)−y
l Anomalous 6-hour error time series: xe′

6 (t) = xe
6(t)−xe

6

l Analysis state covariance: Byy(t) = y′(t) y′>(t)
l Lagged cross covariance: Bxey(t) = xe′

6 (t) y′>(t−1)

Leith’s correction operator, given by L = Bxey Byy
−1, provides a

state-dependent correction:

ẋ = M
(
x
)
+Lx+b

Problem: Direct computation of Lx requires O(N3) floating point oper-
ations every time step!
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III. State-Dependent Error Estimation

Implementation
l DelSole and Hou (1999) used Leith’s state-dependent empirical cor-

rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).
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III. State-Dependent Error Estimation

Implementation
l DelSole and Hou (1999) used Leith’s state-dependent empirical cor-

rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).

l For the SPEEDY model, N = O(105), so computation of Lx′ requires
O(1015) floating point operations every time step.
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III. State-Dependent Error Estimation

Implementation
l DelSole and Hou (1999) used Leith’s state-dependent empirical cor-

rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).

l For the SPEEDY model, N = O(105), so computation of Lx′ requires
O(1015) floating point operations every time step.

l This operation would be prohibitive for operational forecast models
where N ≈ O(107).
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors.
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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III. State-Dependent Error Estimation

First step in our new approach:
Sparse approximation of the Leith correction operator
l univariate covariances generate block diagonal structure
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III. State-Dependent Error Estimation

First step in our new approach:
Sparse approximation of the Leith correction operator
l univariate covariances generate block diagonal structure

l localization introduces sparsity to each block
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III. State-Dependent Error Estimation

First step in our new approach:
Sparse approximation of the Leith correction operator
l univariate covariances generate block diagonal structure

l localization introduces sparsity to each block
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III. State-Dependent Error Estimation

First step in our new approach:
Sparse approximation of the Leith correction operator
l univariate covariances generate block diagonal structure

l localization introduces sparsity to each block
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corresponding to u at 200hPa for
the dense and sparse Leith operators.

l 400 modes required to explain 90% of variance in dense L

l 40 modes required to explain 90% of variance in sparse L
Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 68

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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III. State-Dependent Error Estimation

Second step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the anomalous error & state covariance, Bxex = UΣV>
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III. State-Dependent Error Estimation

Second step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the anomalous error & state covariance, Bxex = UΣV>

l identifies pairs of spatial patterns or EOFs (uk and vk) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.
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III. State-Dependent Error Estimation

Second step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the anomalous error & state covariance, Bxex = UΣV>

l identifies pairs of spatial patterns or EOFs (uk and vk) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.

Principal Components: project error and state anomalies onto EOFs

ak(t) = xe′(t) ·uk

bk(t) = x′(t) ·vk
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III. State-Dependent Error Estimation

Second step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the anomalous error & state covariance, Bxex = UΣV>

l identifies pairs of spatial patterns or EOFs (uk and vk) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.
Principal Components: project error and state anomalies onto EOFs

ak(t) = xe′(t) ·uk

bk(t) = x′(t) ·vk

Heterogeneous correlation maps:

ρ[xe′,bk] =
(

σk√
b2

k(t)

)
uk
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III. State-Dependent Error Estimation

1982-86 error (color) and state (contour) coupled signals

2

3

1

l signals exhibit clear correlation in local structure
Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 75

III. State-Dependent Error Estimation

1982-86 error (color) and state (contour) coupled signals

1
2

3

l signals exhibit clear correlation in local structure
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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Our Method: IV. State-Dependent Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

IV. Correct the state-dependent errors.
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IV. State-Dependent Correction

The control model:

ẋ = M
(
x
)
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IV. State-Dependent Correction

The control model:

ẋ = M
(
x
)

The state-independent online corrected model:

ẋ = M
(
x
)
+

xe
6

∆t
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IV. State-Dependent Correction

The control model:

ẋ = M
(
x
)

The state-independent online corrected model:

ẋ = M
(
x
)
+

xe
6

∆t
Leith’s state-dependent corrected model given by:

ẋ = M
(
x
)
+

xe
6

∆t
+Lx′
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IV. State-Dependent Correction
The control model:

ẋ = M
(
x
)

The state-independent online corrected model:

ẋ = M
(
x
)
+

xe
6

∆t
Leith’s state-dependent corrected model given by:

ẋ = M
(
x
)
+

xe
6

∆t
+Lx′

Our low-dimensional state-dependent corrected model is given by:

ẋ = M
(
x
)
+

[
xe

6 +
K

∑
k=1

ũk

(
σk√

b2
k

)
vk ·x′

] 1
∆t
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IV. State-Dependent Correction

Our low-dimensional state-dependent corrected model is given by

ẋ = M
(
x
)
+

[
xe

6 +
K

∑
k=1

ũk

(
σk√

b2
k

)
vk ·x′

] 1
∆t

During forecasts, the anomalous model state vector can be projected
onto a few (K≈10) dominant anomalous model state signals vk.
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IV. State-Dependent Correction

Our low-dimensional state-dependent corrected model is given by

ẋ = M
(
x
)
+

[
xe

6 +
K

∑
k=1

ũk

(
σk√

b2
k

)
vk ·x′

] 1
∆t

During forecasts, the anomalous model state vector can be projected
onto a few (K≈10) dominant anomalous model state signals vk. The
term

K

∑
k=1

ũk

(
σk√

b2
k

)
vk ·x′

is the best representation of the original 6-hour forecast error anomalies
xe′ in terms of the current anomalous forecast state x′.
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IV. State-Dependent Correction

2

3

1

12 hr forecasts
debiased low-d corrected

200hPa V-wind 
Error (shades)

 and State (contour)

RMS reduced by 14%
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IV. State-Dependent Correction

1 & 3
2

12 hr forecasts
debiased low-d corrected

925hPa Specic Humidity 
Error (shades)

 and State (contour)

RMS reduced by 19%
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IV. State-Dependent Correction

We measure the forecast improvement using Leith’s (univariate) dense
and sparse correction operators and our low-dimensional approxima-
tion.

Dense Leith Sparse Leith Low-Dim
Flops per time step O(N3

gp) O(N2
gp) O(Ngp)

Global Improvement −8% (-4hr) 2% (1hr) 4% (2hr)
N. American Improvement −6% (-3hr) 4% (2hr) 6% (3hr)

Chart contains average January 1987 improvement over state-independent
corrected forecasts. Correction is more effective in regions where the
heterogeneous correlations ρ are large.
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors

l Our method of low-dimensional state-dependent correction:

• improves forecasts, more notably where correlations are large
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors

l Our method of low-dimensional state-dependent correction:

• improves forecasts, more notably where correlations are large
• gives better results than Leith’s correction operator
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors

l Our method of low-dimensional state-dependent correction:

• improves forecasts, more notably where correlations are large
• gives better results than Leith’s correction operator
• is 10 orders of magnitude cheaper! (SPEEDY implementation)
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors

l Our method of low-dimensional state-dependent correction:

• improves forecasts, more notably where correlations are large
• gives better results than Leith’s correction operator
• is 10 orders of magnitude cheaper! (SPEEDY implementation)
• should work easily with existing data assimilation and ensemble

schemes
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Future
l Implement with data assimilation and ensemble schemes

l Test implementation on NCEP operational model (?)

l Reduce jumps in reanalysis climatology due to changes in observing
system
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